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Abstract

Differential item functioning (DIF) deals with how test items perform in different 

demographic groups. Although many operationalizations of DIF are proposed, no single 

approach proves to be exclusively superior.  The current study investigated the properties 

of DIF indices in the differential functioning of items and tests (DFIT) framework and 

further tested the power of item parameter replication method (IPR) in identifying biased 

items within the item response theory (IRT) paradigm. The results indicated the IPR 

method is a useful tool in DIF detection. The source of item parameters covariance 

structure was found to affect the results only slightly. The results indicated that the 

proportion of biased items on the test might not be as influential factor as the actual 

number of biased items. This finding, along with low false negative rates when 99.9th 

percentile cut-off scores is used, supports the view that sequential elimination of biased 

items is preferable over the simultaneous detection.
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CHAPTER I

 Introduction

Differential Item Functioning (DIF): Concepts and Definitions

The issue of test fairness has been inevitably united with the development of 

measurement science. The pivotal question of test bias is related to the accurateness of 

measurement in a specific aspect: “Does the test measure the ability equally accurate 

across various groups of test takers, who are united by certain socio-demographic 

characteristics?” Differential item functioning (DIF) analysis seeks to answer this 

question.

It is important to point out several idiosyncrasies of the early test bias methods as 

this would assist to see the objectives of the modern DIF research more clearly. Most of 

the early test bias methods were united by focusing on only two groups of test takers. 

Hence, there are focal group and reference group; terms that still imply minority and 

majority groups, respectively (Zumbo, 2007). Discrepancy between average tests scores 

for majority and minority groups served as the ground to question the overall test 

fairness.  The political environment of the time ushered the division of test takers only 

into two groups. This, however, is not a defining characteristic of modern DIF analysis. 

Questions might arise as to practical necessity or computational cumbersomeness of DIF 

methods involving more than two groups of subjects. However, the theoretical 

framework does not make reservations for the exclusivity of the two-group design. 

The term “test bias,” therefore, did not initially differentiate between the actual 

group differences (also known as impact) and the test’s predisposition to favor a specific 

group. The term was descriptive of scores’ difference, without elaboration on the causes 
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of such differences. Classical test theory (CTT) was a prevailing measurement theory of 

the day when the notions of test bias were formulated. Naturally, the theoretical 

framework of CTT transcended into the concept of test bias on the fundamental and 

definitional level. Thus, the measurement of test bias was sample and test dependent 

(Lord, 1980). 

With the advent of the item response theory (IRT), which broke loose from the 

sample and test dependency, the definition of test bias was revised according to the new 

framework. The focus shifted from comparing the observed performance of the groups on 

the test to comparing the behavior of items under different group conditions. As the 

result, purification of terms occurred, creating item bias to represent characteristics of an 

item that assigns different scores to participants matched on the ability, but belonging to 

two different groups (Zumbo, 2007). 

Related to item bias, the term item impact came to signify the difference in an 

item’s functioning that existed due to genuine difference of the ability among groups 

(Millsap & Everson, 1993).  Both item bias and item impact are focused on how an item 

functions in each group (hence, differential item functioning). The distinction lied in the 

attribution to the cause of this difference that each label makes. Thus, by labeling the 

observed difference in item’s functioning an item impact, the nature of this difference 

was explained by the underlying true inequality in ability between groups. The label item 

bias, on the other hand, explained the observed difference by the flaws of the test.  As 

Hambleton and Swaminathan (1985) pointed out, the term DIF distinguished the 

empirical evidence from the conclusion regarding the nature of discrepancies. Therefore, 

in order to conclude test bias, the presence of DIF is a necessary, but not a sufficient 
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condition. Throughout this text, the term DIF will be used to describe the existence of a 

difference in functioning of an item between groups that has been caused by the flaws of 

the item. 

Theoretical Context: DIF Classifications and IRT Basics

The most recent and comprehensive review of DIF methods (Millsap & Everson, 

1993) suggested the classification, in which the type of measurement bias was 

distinguished on the basis of  type of conditional invariance: either observed conditional 

invariance (OCI)  or unobserved (UCI).  The distinction between these two broad 

families of DIF lied in whether the analysis used the observed variables or focused on the 

latent traits. In contrast to DIF, the authors introduced the term measurement bias in order 

to signify that DIF refers to the functioning of a single item specifically. Measurement  

bias, however, may involve the behavior of a testlet or an entire test. Such is the case 

with a factor analysis approach to DIF detection (Millsap & Everson, 1993). This 

approach did not make use of parametric indices of IRT, but still investigated the 

behavior of latent variables.  In fact, it is important to understand that DIF analysis is not 

an exclusively IRT method and should not be thought of as such. Methods that do not 

rely on unobserved invariance include Loglinear Models (Kok, Mellengbergh, & Van der 

Flier, 1985), Mantel-Haenzel (Holland, 1985; Holland & Thayer, 1988), Standardization 

Method (Dorans & Kulick, 1983, 1986; Dorans & Holland, 1993), Logistic Regression 

Method (Swaminathan & Rogers, 1990), Logistic Discriminant Function Analysis 

(Miller, Spray, & Wilson, 1992), and others. The Mantel-Haenzel procedure is currently 

the most popular among practitioners as a computationally simple method that requires 

little specialized knowledge.  Due to the space limitation, it is impossible to review this 
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family of DIF methods in the current study.  In its stead, this study will focus on methods 

relying on IRT for their theoretical framework. A review of IRT, thus, is necessary before 

a look is taken at the mathematics of DIF and specifically the Differential Functioning of 

Items and Tests (DFIT) indices. 

Although possessing somewhat formidable reputation among statisticians and 

measurement practitioners, IRT holds major premises that are quite straightforward, 

intuitive, and logically obvious. When one speaks of a measurement instrument that 

attempts to measure a specific trait or ability, one invariably assumes (and has all the 

reason to do so) that the test in question has been designed to detect and represent the 

dependency of a person’s performance on the test onto his or her ability. In other words, 

in intelligence tests higher performance would be linked to higher intelligence. Ideally, 

the performance on the test is the measure of the ability in question. Of course, such is 

never the case, and one naturally assumes the presence of interfering factors (apart from 

ability) which affect subject’s performance on the test. Thus, an assumption must be 

made that the performance on the test is a function of subject’s ability and other 

extraneous factors. In its most general terms, such logic can be written as

)(Ω=Υ fs (1)

where sΥ  is the performance of the subject s, on the test, and Ω is a composite of 

subject’s abilities, test’s characteristics, and measurement error.

Although a variety of complex models for sΥ  is possible, the most simple and 

intuitive of them will be selected for current purposes, namely
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where siγ  is the performance of subject s on item i and n is the number of items. 

Subjects’ performance on the item can be measured differently, either by pass/fail or 

partial credit criterion.  For ease of demonstration, pass/fail credit for all the models will 

be assumed, unless specified otherwise.  

In respect to this model of sΥ  ,  formula (1) can be rewritten as:
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sis ff
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)()( ωγ , (3)

where siω is a composite of abilities of examinee s, characteristics of item i, and 

measurement error. In its turn, siω  can be broken into its individual components. Thus,

ikiiissi επππθω ,...,, 21= ,

where sθ is the ability of subject s,  π  is certain coefficients quantifying the 

characteristics of item i, k is the number of such coefficients, and iε is  the measurement 

error term for item i. 

However, in contrast to CTT, in which the observed score is a composite of true 

score and the error of measurement ( IPIPIP Ε+Τ=Χ ) for test I and person P, IRT deals 

with error differently. IRT allocates the error term to the estimation of the function, thus 

distributing the error among the function’s agents. Under the condition of local 

independence, when controlling for ability, the probabilities of answering items correctly 

are independent of each other. This implies that the only factor influencing the measure 
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of subject’s ability ( sθ ) is the ability itself.  In this way, by resorting to the assumptions 

of IRT it is adopted that

.ˆ...ˆ,ˆ,ˆˆ 21 kiiissi πππθω = (4)

Coefficients kiπ̂  are the forerunners of items parameters, which will be discussed in 

due course. However, now it is time to point out that no definite quantification of these 

parameters is possible, only estimation. In this way, the only known in the equation (1) is 

sΥ , which is the overall performance of the subject on the test and ideally is equivalent to 

subject’s ability. Thus, equations (3) and (4) can be rewritten for the item level as

).ˆ,...ˆ,ˆ,ˆ()ˆ( 21 kiiissisi ff πππθωγ ==  (5)

It is only natural to assume that items would vary among themselves in respect to various 

characteristics such as difficulty, discriminatory power, degree to which the item 

measures purported trait, chances of guessing the correct response, and etc. In fact, if

n11211 ... πππ ===

n22221 ... πππ ===

.

.

.

knkk πππ === ...21 ,

where n is the number of items, the coefficients become constants across items and make 

)( sf θ  to be linearly dependent on ),...,,( 21 ksf πππθ , thus reducing equation (5) to 

)ˆ( ssi f θγ = . This implies the absolute absence of measurement error and identity of 
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items’ characteristics, both of which are contradictory to reality and common sense. This 

also implies that each item contributes to the overall score equally, which is another 

violation of practical sense. Some weights are needed to account for discrepancies of 

items’ characteristics. The aforementioned considerations define two essential questions 

that IRT attempts to answer:

1. What characteristics of an item should be included in )( sif ω ?

2. What is the definition of )( sif ω ? In other words, what is the nature of 

relationship between the observed response, person’s ability, and item’s 

characteristics? 

Now, that it has been made clear that the observed response to an item is a function of 

subjects’ ability and item characteristics, the existing answers to the two fundamental 

questions of IRT are ready to be briefly reviewed. 

The current state of IRT widely recognizes only three item characteristics 

(parameters) as influential agents in the function of examinee’s responses. Known as b, a, 

and c parameters, they respectively represent item’s difficulty, discriminatory ability, and 

guessing. One of the underlying postulates of IRT states that the relationship between 

performance of an examinee on an item and his or her ability can be described by a 

monotonically increasing function called the item characteristic curve (ICC) (Hambleton 

& Swaminathan, 1985). ICC is a mathematical function that relates the ability measured 

by the item and its characteristics to the probability of answering this item correctly. The 

function that builds an ICC curve depends on the IRT model that is being applied to the 

data. 
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While it is possible to describe this function in an infinite number of ways, only a 

few models are currently being used. The models are one parameter logistic (1PL), two 

parameter logistic (2PL), and three parameter logistic (3PL) models. These models 

incorporate different number of parameters as evident from their names. The 1PL model 

describes the ICC function as

)(

)(

1
)(

i

i

b

b

i e
e

P −

−

+
= θ

θ

θ , (6)

where )(θiP  is the probability that an examinee chosen at random with ability (θ) will 

answer item i correctly, and bi is the difficulty parameter of item i. The difficulty 

parameter is quantified as the point on the ability scale where there is 50% chance of 

getting the item correct. Therefore, higher values of b parameter signify smaller 

probability of answering the item correctly. The 1PL model is also known as the Rasch 

model (Rasch, 1960). Although the form of 1PL model is different from the original 

model proposed by Rasch, it is mathematically equivalent to the Rasch model, and 

therefore bares his name. 

Lord (1952) proposed the two parameter model based on the cumulative normal 

distribution (normal ogive). Birnbaum (1968) adapted the two-parameter normal ogive 

function to a logistic distribution, thus formulating what is now known as 2PL:

)(

)(

1
)(

ii

ii

bDa

bDa

i e
e

P −

−

+
= θ

θ

θ , (7)

where ai  is the item discrimination parameter and D is the scaling constant equal to 

1.701. Item discrimination parameter is the slope at the inflection point (b parameter). 
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The items with higher values of ai are more useful in differentiating high-ability 

examinees from low-ability examinees. 

In cases where possible answers to the test items are defined in terms of multiple 

choices, one faces with a possibility of correct answers based solely on chance. 

Depending on the number of response categories, this probability would be different. To 

incorporate this distortion in response interpretation, the third parameter c, known as the 

pseudo-chance parameter, has been added to the model. With this incorporation, 3PL has 

a form of

)(

)(

1
)1()(

ii

ii

bDa

bDa

iii e

e
ccP −

−

+
−+= θ

θ

θ . (8)

Depending on what parameters are incorporated in a given IRT model, the ICCs would 

reflect different properties of the item. 

If two examinees that are matched on the ability have different ICCs, the presence 

of DIF is concluded. DIF would be manifested in the difference between item parameters 

and, consequently, the area between two ICCs. The two key questions in DIF research 

regard the issue of quantifying the difference between ICCs and determining whether this 

difference possesses statistical significance.  The DFIT framework, which will be 

discussed next, provides an approach to measure the difference between two ICCs and to 

determine whether this difference is statistically significant. 

DFIT framework and its indices

Differential Test and Item Functioning (DFIT) was originally proposed by Raju, 

van der Linden, and Fleer (1995).  The framework uses the IRT parameters to define and 
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measure DIF. The use of IRT parameters compares DFIT to other measures of DIF in the 

IRT family.

 The DFIT framework proposes two indices of differential item functioning: non-

compensatory (NCDIF) and compensatory (CDIF).  The DFIT framework also provides 

the measure of the total bias in the test: differential test functioning (DTF). The 

computational constitution of each of these indices is examined next. 

Assuming that there exist observed responses to a test of some ability, the responses 

constitute matrix A with the dimension of n× N, where n is the number of items on the 

test, and N is the number of examinees. The sample of subjects is composed of at least 

two groups of people differing on a specific socio-demographic characteristic (e.g. 

gender, race, and etc.).  Traditional DIF practices assign the minority group into the focal 

group and the majority group to the reference group. The logic is that the focus of the 

analysis is on determining whether a test and its items behave differently for members of 

this group compared to the reference group. 

In the first computational step, the IRT software, such as BILOG-MG, 

MULTILOG, or PARSCALE is used to estimate item parameters (a, b, c) for each item 

and the ability ( sθ ) for each subject. One can use a number of algorithms for this 

estimation (maximum likelihood estimation (MLE), joint maximum likelihood estimation 

(JMLE), marginal maximum likelihood estimation (MMLE), Bayesian methods, and 

etc.). However, MMLE seems to be the most frequently used, even when alternative 

algorithms are available (Lee & Terry, 2004). The MMLE is more accurate than other 

estimation methods because it relies on the properties of ability distribution for the initial 

10



estimates. However, it is more computationally intense than other methods and requires a 

large number of examinees to approximate the distribution of ability properly 

(Hambleton & Swaminathan, 1985). 

After the initial estimates for sθ  are obtained from the total sample, the data file is 

split based on the group membership. In their original paper, Raju, van der Linden, and 

Fleer (1995) were vague on this issue. They only indicated that the item responses for 

each group were simulated by using equal θ . No indication was given pertaining the 

estimates of which group (total, reference, or focal) should be used in the analysis of the 

real data. However, due to the fact that abilities of both focal and reference group come 

from the same normal distribution, it seems fair to assume that total group estimation of 

person parameters would be the most appropriate. The two resulting groups (focal and 

reference) must be checked for the equivalence of the ability distribution in order to avoid 

possible impact items. The problem of inequality of distribution between groups is still a 

threatening issue for theoreticians; this problem is avoided in simulated data. 

Next, item parameters are estimated for each groups individually and brought on the 

same metrics. The sθ -values from the total group are used as initial estimates for 

parameter calibration. Thus, each item would have two sets of item parameters: one 

estimated for the focal group and another for the reference group. Ability estimates, as it 

was noted, should be invariant across groups and are not dependent on the group 

membership. 
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After ability and item parameters are estimated and brought onto the same scale, 

one can calculate probabilities of sθ  based on the model selected for the data. Two 

parameter logistic model (2PL) will be used for this illustration: 

)(1

1
)(

isi bDasi e
P −−+

= θθ ,

where )( siP θ  is the probability of success for examinee s, with trait level θ on item i, ai 

is the  discriminating parameter for item i, and bi is the difficulty parameter for item i. D 

is a scaling constant and equals to 1.701 in the 2PL and 3PL models.  All the notation and 

equations (and derivatives of them) to follow are taken from the original paper by Raju et 

al. (1995), unless specified otherwise.  

Naturally, with two sets of item parameters two equivalent probability estimates (

)( siP θ ) for each examinee per item would be available: one calculated with parameters 

for the focal group and one for the reference group, namely

)(1

1
)(

iFsiF bDasiF e
P −−+

= θθ  and  )(1

1
)(

iRsiR bDasiR e
P −−+

= θθ .

Notice that sθ  is the same for both formulae. As it was pointed out earlier, since abilities 

of both focal and reference groups belong to the same distribution, there is only one sθ -

estimate per examinee.  Therefore, the remaining source of possible discrepancy can 

belong only to the properties of the item. As shown in the discussion of principles of IRT, 

these properties are quantified by item parameters.
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The difference between these two probabilities for each item would constitute the 

fundamental form of DIF measurement. All indices in the DFIT framework will rely on 

this difference for computation. Let this difference be represented by 

)()( siRsiFis PPd θθ −= . (9)

The value of  isd  tells whether item performs differently when the examinee is treated as 

a member of the focal group rather than the reference group. In other words, it would tell 

what the difference in probabilities of answering this item correctly was if the subject 

were treated as a member of different groups.  It is possible then to compute such index 

for every item for a particular examinee.

In IRT, the “true” score, Ts, of the examinee on the test, also known as the expected 

proportion correct (EPC), can be expressed as 

∑
=

=
n

i
sis PT

1

)(θ , (10)

where n is the total number of items on the test. Thus, each examinee would have two 

true scores,

∑
=

=
n

i
siFsF PT

1

)(θ  

in the focal group, and

∑
=

=
n

i
siRsR PT

1

)(θ  

in the reference group. Although, the subject from the focal group has only one θ -

estimate, two “true” scores are available because two different sets of item parameters 
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may be used in calculating the probability ( )( siFP θ  and )( siRP θ ). The difference between 

sFT  and sRT  is defined by Raju et al. as sD . Thus,

sRsFs TTD −= . (11)

If sRsF TT = , it is concluded that the “true” score (EPC) of an examinee does not depend 

on the group membership. In other words, parameters estimated individually for each 

group do not change the function of )( siP θ . The properties of test and items are 

equivalent in respect to both groups.  Therefore, one can see the evidence that the test 

does not function differently (favors or disfavors) on the examinee in question. In this 

way, the measure of DTF on the examinee level can be defined as 2)( sRsF TT − . The 

measure of DTF across all examinees is defined as

2)( sRsFF
TTEDTF −= , (12)

where expectation is taken over the focal group. The subject of expectation, however, is 

arbitrary because in simulation the number of examinees in the focal group will always 

equal to the number of examinees in the reference group. Using formula (11), this 

definition can be rewritten as

222222 )()( DDTRTFDFssF
dfDDEDTF µσµµσθθ

θ

+=−+=== ∫ , (13)

where )(θFf  is the density function of θ  in the focal group, and TFµ  and TRµ  are the 

mean (EPC) of examinees in the focal and reference groups, respectively. sD  can also be 

defined as ∑
=

n

i
isd

1

. Thus, the definition of DTF can be rewritten as
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Using formula (13), DTF can be transformed into

]),([
1

si D

n

i
dsi DdCovDTF µµ∑

=

+= ,

where ),( si DdCov  is the covariance between the difference in item probabilities for item 

i ( id ) computed for each examinee and the difference between the two EPCs ( sD ) for 

each examinee. The 
idµ  and 

sDµ are the means of id  and sD , respectively.  By removing 

the summation across items, one receives a definition of DTF on the item level, which 

Raju et at.(1995) called compensatory differential item functioning (CDIF). CDIF is thus 

defined as

si Ddsiisi DdCovdDECDIF µµ+== ),()( . (15)

Two important concepts regarding the CDIF index must be immediately brought to 

attention. First is its compensatory or additive nature. As seen from formula (14), the 

difference between item probabilities ( id ) may take on negative values in cases where 

item favors the member of the focal group. These values are summed across items for an 

examinee to produce sD , which is only then squared to produce DTF index at the 

examinee level ( 2
sD ). Because the squaring occurred after the addition, the negative and 

positive values of id  can cancel each other out.  Therefore, it is theoretically possible to 

15



have DTF index of 0, indicating the absence of bias in the test and yet to observe bias on 

the item level. Of course, such biases would have to be symmetric and of matching 

magnitude. 

The second property of CDIF is obvious from equation (15).  The computation 

utilizes both the total bias of an item across examinees ( id ) and the total bias associated 

with each examinee across all items ( sD ). Therefore, it does not assume that all other 

items on the test are unbiased. This sets CDIF apart from other IRT-based DIF measures, 

which all share this assumption (Flowers, Oshima, & Raju, 1999). 

Non-compensatory differential item functioning (NCDIF), on the other hand, does 

hold assumption that all items in the test other than item i are completely unbiased. It 

does not include information from other items, and concerns solely the difference 

between probabilities id for item i across all examinees. Thus, Raju et al.(1995) define 

NCDIF as

2222 )()(
ii ddiFisi dEdfdNCDIF µσθθ +=== ∫

∞

∞−

, (16)

where 
2

idσ is the variance of difference in probability for item i across all examinees, and 

idµ  is its mean.  The computational mechanics of CDIF and NCDIF are presented in 

Figure 1.  Notice that the values of 2
sD do not change from item to item. 

Three indices in the DFIT framework have been introduced: DFT, CDIF, and 

NCDIF. The logic of these indices and their relative computational simplicity make DFIT 

an attractive choice for practitioners in investigating measurement bias in tests. However, 
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the issue of significance testing has been at the heart of criticism and research in the 

DFIT framework.  Raju et al. (1995) showed that NCDIF would have a 2χ distribution. 

This allows one to determine whether the observed magnitude of NCDIF differs 

significantly from chance.  The next section will examine the logic of significance testing 

of NCDIF index and problems associated with such testing. 
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Item: i=1     
 
Subject
 

Ds
2 di Dsdis di

2

1 0.09970 0.024 0.0024 0.0006
2 0.05373 -0.014 -0.0007 0.0002
3 0.15744 0.008 0.0012 0.0001
4 0.20579 0.025 0.0052 0.0006
5 0.04646 -0.016 -0.0007 0.0002

   

   ∈ = 0.0015 0.0003

   CDIFi NCDIFi

Item: i=1     
 
Subject
 

Ds
2 di Dsdis di

2

1 0.09970 -0.003 -0.0003 0.0000
2 0.05373 0.028 0.0015 0.0008
3 0.15744 0.018 0.0028 0.0003
4 0.20579 0.002 0.0004 0.0000
5 0.04646 0.029 0.0013 0.0008

   

    ∈ = 0.0012 0.0004

   CDIFi NCDIFi

FIGURE 1. Demonstration of computing CDIF and NCDIF indices.
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Significance testing of NCDIF

In their original paper introducing the DFIT framework, Raju et al. (1995) 

suggested using the 2χ -test or the t-test for determining significance of the NCDIF 

index.  Thus, given that id is normally distributed and has a finite variance, the 2χ -test 

for NCDIF is defined as

i

F

d

iF
N

NCDIFN
σ

χ )(2 =

with FN  degrees of freedom, where FN is the number of examinees in the focal group. 

Under the same assumptions the t-test for NCDIF is defined as

i

i

d

dFN
t

σ
µ )()( 2

1

=

with FN -1 degrees of freedom. 

However, as exploratory Monte Carlo studies have shown, the NCDIF index in 2χ -

tests is overly sensitive to large sample sizes (Fleer, 1993).  Under a zero-bias condition 

and .01 significance level the rate of false positive significantly exceeded 1%. To avoid 

this problem, Fleer identified the size (.006) of NCDIF index that would yield 

approximately 1% false positives at .01 alpha level in 2χ -test. Thus, a two-fold rule was 

developed: the item was considered to exhibit differential functioning if the absolute 

value of the NCDIF index exceeded .006 and produced significance in the 2χ -test.  The 

significance level refers to the alpha level that is adopted in the 2χ -test.  
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Studies that investigated extensions of NCDIF to polytomous IRT models were 

forced to develop the cutoff scores in a similar fashion through exploratory simulations 

(Oshima, Raju, & Flowers, 1997). As Oshima, Raju, and Nanda (2006) imply, the 

appropriate cutoff score of NCDIF would be idiosyncratic to each case. It is obviously 

impossible for practitioners to conform their tests to the examined IRT paradigm in 

regards to models, data type, test length, and sample sizes, which all supposedly affect 

the cutoff value.  Chamblee (1998) has demonstrated that in a dichotomous case such 

varying factors as sample size and the type of IRT model (1PL, 2PL, or 3PL) will 

influence the cutoff scores. Both the size of sample and the number of parameters in IRT 

model were found to be directly related to the magnitude of the cutoff scores. 

The viable solution would be to identify appropriate cutoff values for each 

particular case. However, the paradigm proposed by Fleer (1993) for such purposes and 

adopted afterwards by other researches (Bolt, 2002; Flowers, Oshima, & Raju, 1999) 

appears to be overly complex and technically challenging for typical practitioners. Such 

methods involved simulating the pairs of datasets with observed response that exhibited 

the characteristics of zero DIF and cycling through the entire DFIT computational 

sequence to achieve a single NCDIF index. Naturally, a large number of simulations 

would be necessary to approximate the true properties of NCDIF distribution for the 

given case and derive the appropriate cutoff score. Such methods would typically 

produce a single cut-off score for all items. Oshima et al. (2006) proposed a new method 

of deriving the cutoff values from simulations of the given case called item parameter 

replication (IPR) method. Instead of simulating response sets, it generated item 

parameters with similar properties of distribution and covariance structure.
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Oshima, et al. (2006) study 

In their original study, Oshima, Raju, and Nanda (2006) introduced item parameter 

replication method (IPR) for determining NCDIF cutoff values and conducted a 

simulation study investigating different conditions that would influence these cutoff 

values. The SAS macro “DIFCUT” (Nanda, Oshima, & Gagne, in press) was used to 

simulate the cutoff scores and to compute the DFIT indices. 

The conditions investigated in the study were as follows:

• Two test length (n = 20, n = 40),

• Three sample size combination (500:500, 1000:1000, 500:1000, focal and 

reference groups, respectively),

• Three levels of DIF (0%, 10%, and 20%),

• Three IRT models (1PL, 2PL, and 3PL),

• Two ability distributions: No impact (the mean of theta = 0== referencefocal θθ ) 

and impact condition ( 5.−=focalθ , 0=referenceθ ).

The design would result in a total of 108 test conditions (2× 3× 3× 3× 2). However, 

the 20% DIF condition was not applied to the 1PL model because nonuniform bias items 

were already included in this condition. Thus the study considered 96 conditions. The 

items parameters that were used for generating item responses are the same as in the Raju 

at al.(1995) and Oshima et al.(2006) and can be found in the corresponding papers.

Although, the overall performance of the new methods seemed to be an 

improvement over the traditional χ 2-methods used earlier, certain problems were 

encountered that required further investigation. One of the most evident problems 

21



concerned a high false positive (FP) and false negative (FN) rate for the 3PL model in the 

20% DIF condition. False positives are items that were recognized as exhibiting 

significant NCDIF, but in reality did not. False negatives are the items that did in fact 

possess NCDIF, but were missed as such by the analysis. The authors indicate poor 

performance of the 3PL model only for the 40-item condition. However, in relation to the 

number of biased items and test’s length, 3PL performs only slightly better in the 20-item 

condition than in the 40-item condition. Only half of the biased items (50%) were 

correctly identified in the N = 500:500 and N = 500:1000 conditions for the 40-items test, 

and one forth (25%) in the N = 1000:1000 condition. 

The authors speculatively attribute such poor performance to several factors 

including smaller magnitude of DIF in the condition (20% bias, n = 40), small sample 

size of the focal group (N = 500), and the way the latter influence simulation and 

estimation of the c- parameter. The value of the c- parameter might also have exerted a 

certain influence on the accuracy of the result. Oshima et al. used a fixed c-value of .20 

for all conditions employing 3PL. 

Another important issue concerns the source of item parameters and their 

covariance structures used for simulating the zero-DIF condition and deriving the cutoff 

scores. The study used the focal group only with item parameters and covariance 

structures drawn from the focal group as well.  Based on their and the study by Chamblee 

(1998), the authors do agree that it is unclear which source would provide more 

appropriate cutoff scores: the focal, reference, total groups, or some combination of them. 

Such judgment seems impossible from theoretical perspective and must rely on empirical 

exploration (Oshima et al., 2006). Questions have also been raised regarding the 
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influence that test’s difficulty level and model fit exert onto the item standard errors 

obtained in estimation. 

Lastly, after examination of DIFCUT programming code, a small inaccuracy has 

been discovered. In computing probability values, the authors used the formula for 3PL 

across all the IRT models (1PL, 2PL, and 3PL).  Under the condition of stable null c 

parameter (c = 0), this formula would be reduced to and produce identical results as the 

2PL formula. This, however, is not the case with 1PL. The 3PL formula does not have 

the capacity to be reduced under c = 0 and a = 1 to 1PL formula due to the different 

scaling constant (D) value of 1 for the 1PL model. In 2PL and 3PL this constant equals to 

1.701, but in 1PL such constant is not applied. After applying both formulas to the 

identical sample data, a discrepancy in probability values amounted to the average of .

025 (M = .025, SD = .011, MAX = .04.) in 1,000 paired calculations. 

The Purpose of the Current Study

The current study aims to replicate the paradigm and proceedings of Oshima et al. 

(2006) and to introduce some new manipulations of conditions in order to further 

investigate significance testing of NCDIF index in the DFIT framework. Specifically, the 

purpose of the current study will include:

1) Two new conditions will be introduced to the existing paradigm with different 

values of c parameter (.1 and .5) in order to investigate the effect of the c-

parameter on significance testing of NCDIF. 

2) The sources of item parameters and their covariance structures will be 

manipulated to determine the most appropriate combination for deriving 

NCDIF cutoff scores.  The new conditions will be applied: all (person and 
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item) estimates and covariance structure come from reference group, instead 

of the focal group, as in the original study.

3) The original study in respect to the 1PL model will be replicated with the 

corrected formula.
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CHAPTER II

 Method

The item parameter replication method differs from previous methods of 

determining significance of NCDIF indices in a number of important respects. First, 

instead of generating multiple datasets with specified IRT characteristics, only the item 

parameters are replicated based on the estimates from a single IRT analysis. Second, IPR 

allows determining the NCDIF cutoff score individually for each item, thus furthering the 

accuracy of DIF detection. Since the IPR procedures are identical for all items, the steps 

of IPR for a single item will be described next after the description of data generation.

Generating Data for Original Conditions

Based on the characteristics of DIF to be investigated, the differences in item 

parameters for the reference and focal groups are quantified. Figure 2 presents a partial 

recreation of the DIF conditions used in both the original study by Raju et al. (1995) and 

Oshima et al.(2006). The blank spaces left in the focal group table signify that the 

parameters of the corresponding items were the same for both groups. The discrepancies 

in item parameters are arbitrary and depend on the research objectives. Both item 5 and 

10 in Figure 2 represent uniform bias. Uniform bias is the condition when the focal and 

reference groups differ only on the b parameter. Higher values of b in the focal group 

indicate that items 5 and 10 were more difficult to pass for members of the focal group 

relative to the reference group. 
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 Reference  Focal
Item a b  a b

1 0.55 0.00
2 0.55 0.00
3 0.73 -1.04
4 0.73 1.04
5 0.73 0.00 0.73 1
6 0.73 0.00
7 0.73 0.00
8 0.73 0.00
9 0.73 1.04
10 0.73 1.04 0.73 1.54

FIGURE 2. Partial recreation of item parameters used in Oshima et al. (2006)
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A column vector with dimensions of N×1, where N is the number of examinees, 

is created. Each element is drawn at random from a normal distribution with µ = 0, and σ 

= 1. Thus, the vector represents a selection of underlying trait levels (θ) for N examinees 

drawn from the population. 

Then, )( siP θ  is calculated for each item and examinee with respect to the focal or 

reference group parameters. Figure 3 shows the sequence of simulating item responses 

for item 10 for the first ten examinees. 

A random number from a normal distribution is drawn and used for comparison to 

the calculated probability value ( )( siP θ ). If a number taken at random from a uniform 

distribution is smaller than the )( siP θ -value, the value of “1” is assigned as the observed 

response produced by this examinee on this item. This sequence is executed for all 

examinees and items, producing an N×n matrix, where N is the number of examinees and 

n is the number of items. The matrix contains simulated responses of examinees with 

specified abilities and parameters. 

Item Parameter Replication Method

After the dataset for each desired study condition has been generated, an IRT 

analysis is run through one of the available IRT software such as PARSCALE or BILOG. 

These procedures are not discussed in this work. The IRT analysis produces output files 

containing item parameters and their covariance structures for both reference and focal 

groups.  The following 9 steps are adopted from the original study of Oshima et al.(2006) 

and describe the IPR method.
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 Item i=10, group=reference     
 Parameters
 b a
Examinee   

θ Pi(θ s)
  
Ranuni   Response

    
1 0.73 1.04 -0.33 0.15 -0.67
2 0.73 1.04 1.54 0.65 -1.42
3 0.73 1.04 0.26 0.27 0.81
4 0.73 1.04 -0.56 0.12 0.46
5 0.73 1.04 0.78 0.42 1.30
6 0.73 1.04 -0.66 0.11 0.89
7 0.73 1.04 -0.02 0.21 -0.30
8 0.73 1.04 -0.77 0.10 0.73
9 0.73 1.04 0.72 0.40 -0.87

10 0.73 1.04 1.26 0.57 -1.14

1
1
0
0
0
0
1
0
1
1

FIGURE 3. Demonstration of generating item responses from set conditions.
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if 
P(θ)>ranuni(0) 

then 
response="1"; 

else 
response="0";



Step 1. Let column vector Mi with dimensions k×1 contains item parameters of item i  

for the focal group, where k  is number of parameters according to the 

selected IRT model. Thus, for a 3PL model, vector Mi has the form of
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By assuming that Ri is positive definite, one can decompose the Ri  matrix into 

the product of triangular matrix T and its inverse. Thus, in case of the 3PL 

model, the upper triangular matrix Ti will have the form of
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Step 2. Let x1i represent a column vector with dimensions k×1, where k is the number 

parameters of the corresponding IRT model. For the 3PL, the vector x1i will 

contain three elements. Each element is drawn at random from an 

independent, standardized (M = 0, SD = 1) and normally distributed 

population.  Let x2i represent a second vector, of which dimensions and 

elements were defined in a similar fashion. 

Step 3. Each vector x must contain random elements from a k-dimensional 

standardized multivariate normal distribution with a correlation structure for 

the k dimensions that are equivalent to the structure of Ri matrix. In order to 

achieve this transformation each vector is pre-multiplied by the transpose of 

triangular matrix T, which contains this correlation structure for item i. The 

result is two column z vectors possessing the qualities of the desired 

multivariate distribution. Thus,

iii xTz 11 ′= ,

iii xTz 22 ′= .

Step 4.  It is necessary to obtain a vector of k values that come at random from sets of 

populations, in which interrelating properties are defined by original 

parameters’ covariance structure. This has been achieved by step 3. Now  z 

vectors must be adapted to reflect the means and variances of the original item 

parameters. This is done by a simple linear transformation:

iiii MzDy += 1
2

1

1
,

iiii MzDy += 2
2

1

2
.
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In this way, vectors y represent item parameters that came from standardized 

multivariate distributions with µ1i = bi, µ2i = ai, and µ3i = ci, and covariance 

structure defined by Ri matrix. Vector y1i would represent simulated item 

parameters for the reference group for item i, and y2i, respectively, item 

parameters for the focal group. Please note, that the distribution from which 

both vectors come are identical. Therefore, any discrepancy between them 

must be attributed to sampling error exclusively. This would represent a 

condition when the true DIF is zero. 

Step 5. Using the computations described earlier, it is now possible to compute the 

NCDIF indices for each item. With theta estimates from the focal group and 

two y vectors probability functions are computed. The differences in these 

pairs of probability functions will constitute the basis for computation of the 

NCDIF.

Step 6. Step 5 can be replicated as many times as necessary according to the needs of 

the study. However, Oshima et al. (2006) investigated the number of 

replications necessary to achieve stable cutoff scores. The indices seem to 

stabilize after 600 replications and do not differ substantially from results 

from 10,000 replications. The 1,000 replications were chosen as the 

appropriate number for their study. This study will follow their guidelines. 

Step 7. All values of NCDIF obtained from the step 6 are sorted in ascending order 

and ranked. The 90th, 95th, 99th, and 99.9th percentile of the scores are recorded 

to represent the cutoff values at significance levels of .10, .05, .01, and .001, 

respectively.
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Step 8. Now the NCDIF index for item i obtained from the actual data is compared to 

the cutoff value at the selected alpha level to determine significance. 

Step 9. Steps 1 through 8 are repeated for every item of the test. Because the 

algorithm is applied to each item individually, it allows establishing possibly 

different cutoff scores for each item according to the properties of its 

parameters.

Generation of response data

Based on the item parameters used by Oshima et al.(2006) the response data were 

generated with the SAS environment via the procedure spelled out in Raju et al. (1995). 

The procedure was identical to the RANGEN (Fleer et al., 1991) computer program that 

was described earlier. Each unique combination of item parameters generated a separate 

response dataset, which was used in the subsequent IRT analysis.

IRT Analysis

The generated datasets with simulated responses were read into the BILOG 

software. The results of BILOG analysis included ability estimates, item parameters 

estimates, and covariance structure of the latter for the total, reference, and focal group. 

NCDIF computation

The DIFCUT SAS program, obtained from the Nanda et al. (in press), was used to 

derive the NCDIF cutoff scores, to compute the observed NCDIF, and to make a decision 

in regards to its significance. The rates of false positives and false negatives under the 

new conditions were compared to the results of the original study. 
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CHAPTER III

Results

Overall, the results of the current study were in accordance with the results of 

Oshima et al. (2006). Although certain differences were peculiar and would be discussed 

separately, the results of this replication of IPR method did support the usefulness of IPR 

in determining the significance of NCDIF indices in the DFIT framework. 

Table 1 showed the number of false positives (FPs: identifying non-DIF items as 

having significant DIF) and false negatives (FNs; identifying DIF items as having no 

DIF). In the N = 500:500 condition, only 3PL with c = .20 and 20% DIF produced 1 false 

positive and 1 false negative cases. The N = 1000:1000 condition provided somewhat 

aberrant results, giving 2 false positives in the 1PL 10% DIF condition. The N = 

500:1000 condition gave results similar to the results of the previous study in 

corresponding conditions; 1PL with 10% DIF produced 1 false positive and 3PL with 

20% DIF produced 1 false positive and 1 false positive.

For the ease of convenience comparing these results to the results of the original 

study, the formatting was replicated.  The IPR method performed well at identifying DIF 

items in all sample size conditions with 0% and 10% DIF: 5 FP cases and 4 FN cases in 

total.  However, it did not perform well in the 20% DIF condition in both 20 and 40-item 

tests with 5 FP cases and 25 FN cases. The majority of FN cases came from the 40-item 

test condition. Oshima et al. (2006) admitted poor performance of DIFCUT macro only 

with the 3PL model for the 40-item  20% DIF test. The results of this study, however, 

indicated that poor detection accuracy of DIFCUT might not be localized to the 3PL case, 

but be inherent to the entire 20% DIF condition.
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Table 1
          

False Positive (FP) and False Negative (FN) for the No-Impact Condition*
  

 N = 500:500  N = 1000:1000  N = 500:1000
 1PL 2PL 3PL(.2)  1PL 2PL 3PL (.2)  1PL 2PL 3PL (.2)
0.01  (a) Test length = 20 items**
0% 0.0117 0.0127 0.0272  0.0060 0.0063 0.0191  0.0117 0.0127 0.0272
FP 0 0 0  0 0 0  0 0 0
FN 0 0 0  0 0 0  0 0 0

10% 0.0121 0.0130 0.0278  0.0060 0.0062 0.0240  0.0121 0.0130 0.0278
FP 0 0 0  2 0 0  1 0 0
FN 0 0 0  0 0 0  0 0 0

20% 0.0119 0.0134 0.0457  0.0059 0.0065 0.0229  0.0119 0.0134 0.0457
FP NA 0 1  NA 1 0  NA 0 1
FN NA 0 1  NA 0 0  NA 0 1
0.01  (b) Test length = 40 items**
0% 0.0114 0.0122 0.0244  0.0059 0.0059 0.0177  0.0114 0.0122 0.0244
FP 0 0 0  0 0 0  0 0 1
FN 0 0 0  0 0 0  0 0 0

10% 0.0117 0.0123 0.0250  0.0059 0.0059 0.0167  0.0117 0.0123 0.0250
FP 0 0 1  0 0 0  0 0 0
FN 0 1 1  0 0 1  0 0 1

20% 0.0117 0.0121 0.0257  0.0058 0.0060 0.0154  0.0117 0.0121 0.0257
FP NA 0 0  NA 1 0  NA 1 0
FN NA 3 5  NA 2 4  NA 4 5

* NCDIF cutoff at 99th percentile        
** Not linked          
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Table 2 showed FPs and PNs for two new experimental conditions: 3PL with c = 

0.1 and 3PL with c = 0.5.  The results indicated that with decreased pseudo-guessing 

parameter (c = 0.1) the increase in accuracy of detection did not follow. In fact, when c = 

0.1 and c = 0.2 conditions were compared, the latter outperformed in terms of both FPs 

and FNs in many cases. The discussion of this finding is provided later. The extreme 

condition of c = 0.5, however, does suggest that extreme values of pseudo-guessing 

parameter undermine accuracy of the model. This is consistent with the general research 

in the field; 3PL models have been consistently found to be the most problematic.

Although the numbers of FPs and FNs in this study are comparable to their 

counterparts in the Oshima et al.’s study, the overall NCDIF cutoff points were 

considerably higher. Oshima et al.(2006) reported the NCDIF cutoff values of .0054, .

0074, and .0100 for 1PL, 2PL, and 3PL, respectively for the 0% DIF condition with N = 

500:500. The values for corresponding conditions in the current study were .0117, .0127, 

and .0272. This observation is important in a number of respects. First, the magnitude of 

cutoff scores did not influence the accuracy of DIF detection. In previous studies, higher 

values of cutoff scores were presented as possible cause of increased FNs in general, 

particularly in the 3PL models with 40-item tests. Second, the effects of sample size and 

the type of IRT models on cutoff scores were similar to those of Oshima et al., in spite of 

the increased cutoff values. The smaller sample size resulted in higher cutoff values. It 

was also noted that the more parameters in the IRT model, the higher cutoff values. 

35



Table 2
          

False Positive (FP) and False Negative (FN) for the No-Impact Condition*

 N = 500:500  N = 1000:1000  N = 500:1000

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

0.01  (a) Test length = 20 items**
0% 0.0272 0.0284 0.0437  0.0191 0.0210 0.0623  0.0272 0.0284 0.0437
FP 0 0 0  0 0 0  0 0 0
FN 0 0 0  0 0 0  0 0 0

10% 0.0278 0.0256 0.0355  0.0240 0.0202 0.0538  0.0278 0.0256 0.0355
FP 0 0 0  0 0 0  0 0 0
FN 0 0 1  0 0 2  0 0 2

20% 0.0457 0.0274 0.0449  0.0229 0.0164 0.0624  0.0457 0.0274 0.0449
FP 0 0 0  0 0 0  0 0 0
FN 2 3 4  1 1 3  2 3 4

0.01  (b) Test length = 40 items**
0% 0.0244 0.0264 0.0407  0.0177 0.0152 0.0372  0.0244 0.0264 0.0407
FP 0 0 0  0 1 0  1 0 0
FN 0 0 0  0 0 0  0 0 0

10% 0.0250 0.0259 0.0399  0.0167 0.0186 0.0600  0.0250 0.0259 0.0399
FP 1 0 0  0 0 0  0 0 0
FN 1 1 1  1 1 2  1 1 2

20% 0.0257 0.0308 0.0529  0.0154 0.0198 0.0558  0.0257 0.0308 0.0529
FP 0 0 0  0 0 0  0 0 0
FN 5 5 8  4 3 7  5 6 7

* NCDIF cutoff at 99th percentile        
** Not linked          
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Tables 3 and 4 presented FPs and FNs for the same conditions as in Tables 1 and 

2, respectively, with the 99.9th percentile of NCDIF as the cutoff score.  Although the 

99.9th percentile as cutoff score reduced the number of biased items identified, the FP 

cases virtually disappeared.  A more conservative cutoff score may be useful in 

determining the most reliable DIF detection. Using a higher percentile rank for NCDIF 

cutoff score, however, considerably increased the FNs rate. On the other hand, items 

marked as biased at 99.9th NCDIF percentile rank would be most probably identified 

correctly. In other words, the probability of identifying an item as biased when it is in fact 

unbiased would be minimal.

Another important aspect must be pointed out: linking of item parameters. The 

algorithm of the DIFCUT macro and the logic of the NCDIF index assumed that after the 

cutoff scores of NCDIF have been determined through item replication, the actual 

NCDIF indices are computed using the originally estimated item parameters. Due to the 

fact that the data from focal and reference groups were analyzed in BILOG separately, 

the item parameters from these two estimations would not be on the same scale. For this 

purpose, the IPLink software was utilized to bring the item parameters of the reference 

group on the same scale with the item parameters of the focal group. After parameters 

were brought on the same scale, the actual NCDIF indices were computed by applying 

two sets of item parameters (focal and reference) to each member of the focal group.

As the means to explore possible effects of different scales of item parameters on the 

NCDIF detection, a separate condition was run in which the item parameters in the 

computation of the actual NCDIF remained on the original scales. Unlinked parameters, 

surprisingly, yielded equally good results.

37



Table 3
          

False Positive (FP) and False Negative (FN) for the No-Impact Condition*
  

 N = 500:500  N = 1000:1000  N = 500:1000
 1PL 2PL 3PL(.2)  1PL 2PL 3PL (.2)  1PL 2PL 3PL (.2)
0.01  (a) Test length = 20 items**
0% 0.0117 0.0127 0.0272  0.0060 0.0063 0.0191  0.0117 0.0127 0.0272
FP 0 0 0  0 0 0  0 0 0
FN 0 0 0  0 0 0  0 0 0

10% 0.0121 0.0130 0.0278  0.0060 0.0062 0.0240  0.0121 0.0130 0.0278
FP 0 0 0  1 0 0  0 0 0
FN 0 0 0  0 0 0  0 0 0

20% 0.0119 0.0134 0.0457  0.0059 0.0065 0.0229  0.0119 0.0134 0.0457
FP NA 0 0  NA 0 0  NA 0 0
FN NA 0 2  NA 0 1  NA 0 2
0.01  (b) Test length = 40 items**
0% 0.0114 0.0122 0.0244  0.0059 0.0059 0.0177  0.0114 0.0122 0.0244
FP 0 0 0  0 0 0  0 0 0
FN 0 0 0  0 0 0  0 0 0

10% 0.0117 0.0123 0.0250  0.0059 0.0059 0.0167  0.0117 0.0123 0.0250
FP 0 0 0  0 0 0  0 0 0
FN 0 1 1  0 0 1  0 1 2

20% 0.0117 0.0121 0.0257  0.0058 0.0060 0.0154  0.0117 0.0121 0.0257
FP NA 0 0  NA 0 0  NA 1 0
FN NA 3 7  NA 2 4  NA 4 7

* NCDIF cutoff at 99.9th percentile        
** Not linked          
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Table 4
          

False Positive (FP) and False Negative (FN) for the No-Impact Condition*

 N = 500:500  N = 1000:1000  N = 500:1000

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

0.01  (a) Test length = 20 items**
0% 0.0272 0.0284 0.0437  0.0191 0.0210 0.0623  0.0272 0.0284 0.0437
FP 0 0 0  0 0 0  0 0 0
FN 0 0 0  0 0 0  0 0 0

10% 0.0278 0.0256 0.0355  0.0240 0.0202 0.0538  0.0278 0.0256 0.0355
FP 0 0 0  0 0 0  0 0 0
FN 0 0 1  0 0 2  0 0 2

20% 0.0457 0.0274 0.0449  0.0229 0.0164 0.0624  0.0457 0.0274 0.0449
FP 0 0 0  0 0 0  0 0 0
FN 2 3 4  1 1 3  2 3 4
0.01  (b) Test length = 40 items**
0% 0.0244 0.0264 0.0407  0.0177 0.0152 0.0372  0.0244 0.0264 0.0407
FP 0 0 0  0 0 0  0 0 0
FN 0 0 0  0 0 0  0 0 0

10% 0.0250 0.0259 0.0399  0.0167 0.0186 0.0600  0.0250 0.0259 0.0399
FP 0 0 0  0 0 0  0 0 0
FN 1 1 3  1 1 2  2 1 3

20% 0.0257 0.0308 0.0529  0.0154 0.0198 0.0558  0.0257 0.0308 0.0529
FP 0 0 0  0 0 0  0 0 0
FN 7 6 8  4 6 8  7 6 8

* NCDIF cutoff at 99.9th percentile        
** Not linked          
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Tables 1 through 4 contained results from unlinked data; tables 5 through 8 

recreated the same conditions for linked data. Linking of the item parameters did 

decrease the number of FNs, however it also increased the number of FPs by a larger 

proportion. The increase in FPs, it must be noted, was primarily localized in the unequal 

sample size conditions. The overall conclusions, however, regarding the performance of 

IPR were not affected by linking.

Instead of generating a separate response dataset for each cycle of the simulation, 

the IPR method created a large number of sets of parameters, which were used in 

computing the NCDIF cutoff values. Each of such parameter sets was created using the 

original item parameters and the covariance structure. One of the manipulations of the 

current study was the use of parameters and their covariance structures from the reference 

group. Such condition had already been tested by Oshima et al., but only under specific 

circumstances. The current study applied this manipulation to the all design conditions.

Table 9 and 10 showed FPs and FNs for conditions in which the reference group 

parameters were used for parameter replication and deriving the NCDIF cutoff scores at 

the 99th percentile. Numbers of FPs and FNs for the 99.9th percentile cutoff were 

presented in tables 11 and 12. Results indicated that using the reference group 

information to simulate parameters for the NCDIF cutoff score was as effective as using 

the focal group. It yielded slightly lower number of FNs and slightly higher number of 

FPs. These findings supported similar conclusions drawn in Oshima et al.

One of the objectives of the current study was to replicate Oshima et al. with the 

correction to the formula used by DIFCUT for the 1PL model. In the original macro, the 

general formula of 3PL was used for each model, with the anticipation of its reduction 
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under conditions of constant parameters. Formula for 1PL was rewritten as described 

earlier. No significant differences were observed after the implementation of the 

correction. The resulting numbers were virtually identical and therefore not reported. The 

only benefit of the corrected formula was the reduced computer time: by reducing the 

number of mathematical operations performed it decreased the amount of computer time 

necessary for the entire simulation.
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Table 5
          

False Positive (FP) and False Negative (FN) for the No-Impact Condition*
  

 N = 500:500  N = 1000:1000  N = 500:1000

 1PL 2PL 3PL(.2)  1PL 2PL 3PL (.2)  1PL 2PL 3PL (.2)

0.01  (a) Test length = 20 items**
0% 0.0117 0.0127 0.0272  0.0060 0.0063 0.0191  0.0117 0.0127 0.0272
FP 0 0 0  0 0 0  1 3 2
FN 0 0 0  0 0 0  0 0 0

10% 0.0121 0.0130 0.0278  0.0060 0.0062 0.0240  0.0121 0.0130 0.0278
FP 0 1 0  1 2 0  3 1 1
FN 0 0 0  0 0 0  0 0 0

20% 0.0119 0.0134 0.0457  0.0059 0.0065 0.0229  0.0119 0.0134 0.0457
FP NA 6 0  NA 5 0  NA 3 1
FN NA 0 1  NA 0 0  NA 0 1

0.01  (b) Test length = 40 items**
0% 0.0114 0.0122 0.0244  0.0059 0.0059 0.0177  0.0114 0.0122 0.0244
FP 0 0 0  0 0 0  1 4 3
FN 0 0 0  0 0 0  0 0 0

10% 0.0117 0.0123 0.0250  0.0059 0.0059 0.0167  0.0117 0.0123 0.0250
FP 3 0 0  0 3 0  0 1 1
FN 0 0 1  0 0 0  0 0 1

20% 0.0117 0.0121 0.0257  0.0058 0.0060 0.0154  0.0117 0.0121 0.0257
FP NA 2 2  NA 6 0  NA 1 0
FN NA 2 4  NA 0 3  NA 3 4

* NCDIF cutoff at 99th percentile        
** Linked          
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Table 6
          

False Positive (FP) and False Negative (FN) for the No-Impact Condition*

 N = 500:500  N = 1000:1000  N = 500:1000

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

0.01  (a) Test length = 20 items**
0% 0.0272 0.0284 0.0437  0.0191 0.0210 0.0623  0.0272 0.0284 0.0437
FP 0 0 0  0 0 0  2 2 1
FN 0 0 0  0 0 0  0 0 0

10% 0.0278 0.0256 0.0355  0.0240 0.0202 0.0538  0.0278 0.0256 0.0355
FP 0 0 0  0 1 0  1 0 0
FN 0 0 0  0 0 0  0 0 0

20% 0.0457 0.0274 0.0449  0.0229 0.0164 0.0624  0.0457 0.0274 0.0449
FP NA 0 0  0 0 0  1 2 0
FN NA 2 2  0 1 2  1 2 3
0.01  (b) Test length = 40 items**
0% 0.0244 0.0264 0.0407  0.0177 0.0152 0.0372  0.0244 0.0264 0.0407
FP 0 0 0  0 2 3  3 1 1
FN 0 0 0  0 0 0  0 0 0

10% 0.0250 0.0259 0.0399  0.0167 0.0186 0.0600  0.0250 0.0259 0.0399
FP 0 0 0  0 0 0  1 0 0
FN 1 1 1  0 1 1  1 1 2

20% 0.0257 0.0308 0.0529  0.0154 0.0198 0.0558  0.0257 0.0308 0.0529
FP 2 1 0  0 0 0  0 0 1
FN 4 5 7  3 3 6  4 5 7

* NCDIF cutoff at 99th percentile        
**Linked          

43



Table 7
          

False Positive (FP) and False Negative (FN) for the No-Impact Condition*
  

 N = 500:500  N = 1000:1000  N = 500:1000
 1PL 2PL 3PL(.2)  1PL 2PL 3PL (.2)  1PL 2PL 3PL (.2)
0.01  (a) Test length = 20 items**
0% 0.0117 0.0127 0.0272  0.0060 0.0063 0.0191  0.0117 0.0127 0.0272
FP 0 0 0  0 0 0  0 0 0
FN 0 0 0  0 0 0  0 0 0

10% 0.0121 0.0130 0.0278  0.0060 0.0062 0.0240  0.0121 0.0130 0.0278
FP 0 0 0  0 1 0  1 0 0
FN 0 0 0  0 0 0  0 0 0

20% 0.0119 0.0134 0.0457  0.0059 0.0065 0.0229  0.0119 0.0134 0.0457
FP NA 1 0  NA 2 0  NA 2 1
FN NA 0 1  NA 0 1  NA 0 1
0.01  (b) Test length = 40 items**
0% 0.0114 0.0122 0.0244  0.0059 0.0059 0.0177  0.0114 0.0122 0.0244
FP 0 0 0  0 0 0  0 1 2
FN 0 0 0  0 0 0  0 0 0

10% 0.0117 0.0123 0.0250  0.0059 0.0059 0.0167  0.0117 0.0123 0.0250
FP 0 0 0  0 1 0  0 0 0
FN 0 0 1  0 0 1  0 0 2

20% 0.0117 0.0121 0.0257  0.0058 0.0060 0.0154  0.0117 0.0121 0.0257
FP NA 0 0  NA 1 0  NA 1 0
FN NA 3 6  NA 2 4  NA 4 6

* NCDIF cutoff at 99.9th percentile        
** Linked          
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Table 8
          

False Positive (FP) and False Negative (FN) for the No-Impact Condition*

 N = 500:500  N = 1000:1000  N = 500:1000

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

0.01  (a) Test length = 20 items**
0% 0.0272 0.0284 0.0437  0.0191 0.0210 0.0623  0.0272 0.0284 0.0437
FP 0 0 0  0 0 0  0 1 0
FN 0 0 0  0 0 0  0 0 0

10% 0.0278 0.0256 0.0355  0.0240 0.0202 0.0538  0.0278 0.0256 0.0355
FP 0 0 0  0 0 0  0 0 0
FN 0 0 1  0 0 2  0 0 2

20% 0.0457 0.0274 0.0449  0.0229 0.0164 0.0624  0.0457 0.0274 0.0449
FP 0 0 0  0 0 0  1 2 0
FN 1 3 3  1 1 3  1 2 4
0.01  (b) Test length = 40 items**
0% 0.0244 0.0264 0.0407  0.0177 0.0152 0.0372  0.0244 0.0264 0.0407
FP 0 0 0  0 0 1  2 0 0
FN 0 0 0  0 0 0  0 0 0

10% 0.0250 0.0259 0.0399  0.0167 0.0186 0.0600  0.0250 0.0259 0.0399
FP 0 0 0  0 0 0  0 0 0
FN 1 1 2  1 1 2  2 1 4

20% 0.0257 0.0308 0.0529  0.0154 0.0198 0.0558  0.0257 0.0308 0.0529
FP 0 0 0  0 0 0  0 0 0
FN 6 5 8  4 5 8  6 7 7

* NCDIF cutoff at 99.9th percentile        
**Linked          
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Table 9
          

False Positive (FP) and False Negative (FN) for the No-Impact Condition*

 N = 500:500  N = 1000:1000  N = 500:1000

 
3PL  (.2)

3PL 
(.1)

3PL 
(.5)

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

0.01  (a) Test length = 20 items**
0% 0.0118 0.0126 0.0293  0.0060 0.0062 0.0200  0.0060 0.0063 0.0201
FP 0 0 0  0 0 0  1 1 0
FN 0 0 0  0 0 0  0 0 0

10% 0.0118 0.0126 0.0293  0.0060 0.0062 0.0200  0.0060 0.0063 0.0201
FP 0 0 0  2 0 0  2 2 0
FN 0 0 0  0 0 0  0 0 0

20% 0.0118 0.0126 0.0293  0.0060 0.0062 0.0200  0.0060 0.0063 0.0201
FP NA 0 0  NA 1 0  NA 2 0
FN NA 0 0  NA 0 0  NA 0 0
0.01  (b) Test length = 40 items**
0% 0.0114 0.0121 0.0223  0.0098 0.0060 0.0162  0.0058 0.0060 0.0160
FP 0 0 0  0 0 0  2 2 0
FN 0 0 0  0 0 0  0 0 0

10% 0.0114 0.0121 0.0223  0.0059 0.0060 0.0162  0.0058 0.0060 0.0160
FP 0 0 0  0 0 0  1 5 2
FN 0 1 1  0 0 1  0 0 1

20% 0.0114 0.0121 0.0223  0.0059 0.0060 0.0162  0.0058 0.0060 0.0160
FP NA 1 0  NA 1 0  NA 4 0
FN NA 3 3  NA 2 4  NA 3 3

* NCDIF cutoff at 99th percentile        
** Not linked          
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Table 10
          

False Positive (FP) and False Negative (FN) for the No-Impact Condition*

 N = 500:500  N = 1000:1000  N = 500:1000

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

0.01  (a) Test length = 20 items**
0% 0.0293 0.0271 0.0298  0.0200 0.0179 0.0592  0.0201 0.0181 0.0592
FP 0 0 0  0 0 0  0 0 0
FN 0 0 0  0 0 0  0 0 0

10% 0.0293 0.0271 0.0298  0.0200 0.0179 0.0592  0.0201 0.0181 0.0592
FP 0 0 0  0 0 0  0 0 0
FN 0 0 0  0 0 1  0 0 1

20% 0.0293 0.0271 0.0298  0.0200 0.0179 0.0592  0.0201 0.0181 0.0592
FP 0 0 0  0 0 0  0 0 0
FN 0 1 1  0 1 2  0 1 3
0.01  (b) Test length = 40 items**
0% 0.0223 0.0262 0.0467  0.0162 0.0161 0.0481  0.0160 0.0167 0.0470
FP 0 0 0  0 1 0  0 0 0
FN 0 0 0  0 0 0  0 0 0

10% 0.0223 0.0262 0.0467  0.0162 0.0161 0.0481  0.0160 0.0167 0.0470
FP 0 0 0  0 0 0  2 3 0
FN 1 1 1  1 1 1  1 1 2

20% 0.0223 0.0262 0.0467  0.0162 0.0161 0.0481  0.0160 0.0167 0.0470
FP 0 0 0  0 1 0  0 2 1
FN 3 3 7  4 4 6  3 4 7

* NCDIF cutoff at 99th percentile        
**Not linked          
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Table 11
          

False Positive (FP) and False Negative (FN) for the No-Impact Condition*

 N = 500:500  N = 1000:1000  N = 500:1000

 
3PL  (.2)

3PL 
(.1)

3PL 
(.5)

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

0.01  (a) Test length = 20 items**
0% 0.0118 0.0126 0.0293  0.0060 0.0062 0.0200  0.0060 0.0063 0.0201
FP 0 0 0  0 0 0  0 0 0
FN 0 0 0  0 0 0  0 0 0

10% 0.0118 0.0126 0.0293  0.0060 0.0062 0.0200  0.0060 0.0063 0.0201
FP 0 0 0  1 0 0  1 0 0
FN 0 0 0  0 0 0  0 0 0

20% 0.0118 0.0126 0.0293  0.0060 0.0062 0.0200  0.0060 0.0063 0.0201
FP NA 0 0  NA 0 0  NA 1 0
FN NA 0 0  NA 0 1  NA 0 1
0.01  (b) Test length = 40 items**
0% 0.0114 0.0121 0.0223  0.0098 0.0060 0.0162  0.0058 0.0060 0.0160
FP 0 0 0  0 0 0  1 1 0
FN 0 0 0  0 0 0  0 0 0

10% 0.0114 0.0121 0.0223  0.0059 0.0060 0.0162  0.0058 0.0060 0.0160
FP 0 0 0  0 0 0  1 3 0
FN 0 1 1  0 0 1  0 0 1

20% 0.0114 0.0121 0.0223  0.0059 0.0060 0.0162  0.0058 0.0060 0.0160
FP NA 0 0  NA 0 0  NA 2 0
FN NA 3 5  NA 2 5  NA 3 5

* NCDIF cutoff at 99.9th percentile        
** Not linked          
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Table 12
          

False Positive (FP) and False Negative (FN) for the No-Impact Condition*

 N = 500:500  N = 1000:1000  N = 500:1000

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

 
3PL 
(.2)

3PL 
(.1)

3PL 
(.5)

0.01  (a) Test length = 20 items**
0% 0.0293 0.0271 0.0298  0.0200 0.0179 0.0592  0.0201 0.0181 0.0592
FP 0 0 0  0 0 0  0 0 0
FN 0 0 0  0 0 0  0 0 0

10% 0.0293 0.0271 0.0298  0.0200 0.0179 0.0592  0.0201 0.0181 0.0592
FP 0 0 0  0 0 0  0 0 0
FN 0 0 2  0 0 2  0 0 1

20% 0.0293 0.0271 0.0298  0.0200 0.0179 0.0592  0.0201 0.0181 0.0592
FP 0 0 0  0 0 0  0 0 0
FN 0 2 3  1 1 3  1 1 3

0.01  (b) Test length = 40 items**
0% 0.0223 0.0262 0.0467  0.0162 0.0161 0.0481  0.0160 0.0167 0.0470
FP 0 0 0  0 0 0  0 0 0
FN 0 0 0  0 0 0  0 0 0

10% 0.0223 0.0262 0.0467  0.0162 0.0161 0.0481  0.0160 0.0167 0.0470
FP 0 0 0  0 0 0  0 0 0
FN 1 1 3  1 1 2  1 1 3

20% 0.0223 0.0262 0.0467  0.0162 0.0161 0.0481  0.0160 0.0167 0.0470
FP 0 0 0  0 0 0  0 0 0
FN 5 5 7  5 6 6  5 6 7

* NCDIF cutoff at 99.9th percentile        
**Not linked          
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CHAPTER IV

 Discussion

The current study supports the usefulness of the IPR method in identifying biased 

items. Although certain issues still remain unresolved, the DFIT framework proves to be 

an effective and flexible mechanism for detecting bias in tests, equipped well to rival 

with the conventional DIF detection methods and even outperform them. 

The study found that the correction in the computational formula from Nanda et 

al. (in press) did not affect the results noticeably. The only advantage was the decrease in 

computation time, which may be of essence for future simulation studies. The source of 

variance for the item parameters (focal or reference) did not seem to influence the 

detection results significantly. Some differences were found in FNs and FPs of two 

studies. However, the nature of these differences is yet to be explored. The current study 

also supports the view that when the values of c-parameter approach its extreme of 0.5, 

the DIF detection models become increasingly unstable. The study also found that 

compared to the value of 0.1, the c-parameter of 0.2 performed better in DIFCUT. 

The authors of the original paper introducing the DIFCUT macro pointed out its 

poor performance in the 3PL models under the 20% DIF conditions with 40-item tests 

(Oshima, et al., 2006). Their results also indicated an overall poor performance in both 

2PL and 3PL in the 20% DIF condition with 40-item tests in all sample sizes. This trend 

can be found even more prominent in the results of the current study than the original 

study. The NCDIF index, as the majority of DIF indices, relies on the assumption that no 

other items in a given test are biased. When the conditions of DIF in the current study, as 

in Oshima et al.(2006), were considered,  the main focus of the experimental conditions 
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lied in the ratio of biased items to unbiased ones (10%DIF, 20% DIF), not the actual 

number of biased items on the test (2, 4, or 8 items). To illustrate, the 10% DIF condition 

had two biased items on the 20-item test while the same 10% DIF condition on 40-item 

test included four biased items. Naturally, with the higher the number of biased items the 

greater the chance to miss to identify them as biased.  In light of this fact, it might not be 

fair to compare the conditions with the same percent of DIF items (e.g. 10% DIF) but 

different number of biased items.

This might suggest that the high FNs rates in the larger DIF conditions are linked 

to the percentage of biased items only vicariously, primarily depending on the actual  

number of biased items. In order to test this hypothesis, new studies may be conducted to 

utilize other combinations of percentage and actual number of biased items. Procedural 

complexity of such tests does not allow this hypothesis to be included into the scope of 

the current study.

The study also showed that when using the 99th percentile for the NCDIF cutoff 

value, not a single combination of sample size and variance source gave the detection that 

was robust across other conditions (IRT model, amount of DIF, and number of items on 

the test). This implies that the practitioners might not have the necessary precision in 

identifying biased items and would not know the nature of influence of aforementioned 

conditions on the accuracy of detection. 

 However, the study found that by adopting a high percentile value (99.9th) for the 

NCDIF cutoff scores, one can obtain almost perfect FP rates and still have a significant 

number of correctly identified biased items. From the practitioner’s perspective, this 

trade-off is justifiable: FNs or incorrectly identified as unbiased items would be kept on 
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the test and analyzed again while a number of items correctly identified as biased would 

be discarded or rewritten. However, the perfect FP rate would ensure that good and 

unbiased items would be not taken out from the test.

Although the study of DIF in the IRT models has been going on for a couple of 

decades, the DFIT framework is a fairly recent development. Published theoretical works 

dedicated to the DFIT topic are scarce and insufficient for the breadth and complexity of 

underlying statistical mechanisms. Some of the literature used for theory development is 

inaccessible, and some leading scientists, who had been working on DFIT are unavailable 

for consults. Also, due to the number of transitional steps necessary to employ DIFCUT, 

the level of detail in the description of procedure was sometimes compromised. The lack 

of details in the DIFCUT module resulted in unforeseen ambiguity in procedural 

sequences when the procedure was replicated in this study. These limitations somewhat 

undermine the integrity of results and conclusions of this study. However, without the 

accretion of exploratory works on DFIT, constructive and collaborative polemics would 

be stunted by the insufficiency of empirical research.

Among the suggestions for further studies, one can point out to several directions. 

First is the further exploration of the effects of the pseudo-guessing parameter on the DIF 

detection. The current study suggested that the magnitude of the c-parameter and the 

accuracy of DIFCUT are linked by a complex, non-linear, and not a unidirectional 

relationship. Values closer to the maximum and minimum extremes did not produce 

diametrically opposed accuracy rates. This relationship should be explored and 

understood in greater depths.
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Very low rates of FN at the 99.9th percentile for the NCDIF cutoff values may 

suggest another direction for further studies. Cyclic DIFCUT analysis in the DFIT 

framework does not detect the biased items with an acceptable degree of accuracy after a 

single application of the DIFCUT macro. However, as with other DIF detection methods, 

multiple runs of simulation macro, each following a test’s revision, might provide a 

systemic approach to the DIF detection. Currently, the revisions to the tests in iterative 

DIF analyses are governed by subjective judgments and rules of thumb. The decision 

which items to leave and which to discard or rewrite is done in the field of a certain 

ambiguity. The DFIT framework has the potential of systematizing and automating the 

process due to the empiric nature of its major indices. 

Another possible improvement lies in the incorporation of all the steps in the 

simulation sequence into single software package. Although the majority of work in the 

current study was done in SAS, the flow of the process was interrupted a number of times 

by the necessity to resort to BILOG and IPLink. With the current developments which 

bring IRT computing into SAS ( Lee & Terry, 2004), such transition into a single 

software seems only logical. This would allow minimizing human error and bringing 

about the convenience in the variable manipulation, which by its complexity hindered 

realization of studies in the past. 
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